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Abstract

We propose a minimal, amplitude-first primitive for Boundary-Condition Quantum Mechanics
(BCQM) in which (i) primitives are events, directed edges, and complex edge amplitudes; (ii)
a single hop-bounded, locally windowed selection rule chooses the next realized event with
probability o< |K,|?; and (iii) two scales anchor experiments: a short-window envelope o and an
empirical coherence horizon We.,. We give operator-theoretic bounds (Neumann-series control
and LLN/CLT under local boundedness), show no-signalling is preserved, and motivate the
envelope from GKLS-style local dephasing. To encode records, inertia-like drift, and curvature
from inhomogeneities, we introduce a strictly local back-reaction (Axiom 6) that remodels edge
amplitudes near each realized event; we provide concrete, equivariant examples and a small
menu of remodeling maps. An appendix outlines simulations with falsifiable hooks (e.g., a PSD
knee ~ 1/Weon, Zeno scaling as o] 0, and anisotropy self-averaging). The note is intended as
a precise, testable proposal; continuum limits and full gravitational dynamics are deferred to
follow-ups.

Remark 1 (Quick map for the reader). Primitives. Events (nodes), directed connections (edges),
and complex edge amplitudes a.
One rule. From the last realized event E,,, pick the next event x with probability ‘KT(En—m')
where K, is a hop-bounded, locally windowed sum of path amplitudes A[y] with envelope F[v;o].
What emerges. In the dense limit, the web of realized events admits a stable coarse-grained
geometry; the coherence horizon Weon sets a floor on recoverable interference.

This box is a non-technical compass; formal definitions follow immediately.
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Remark 2 (Scope of this note). We provide precise primitives, a single stochastic selection rule,
operator-theoretic bounds sufficient for truncated kernels, and empirical hooks via the coherence
horizon Ween. Full continuum limits, uniqueness of 3+1 emergence, and dynamical gravity/inertia
are deferred; open problems are flagged explicitly and simulations are outlined in the Appendiz.

Remark 3 (Notation convention: W vs. w). Throughout, W denotes the physical coherence horizon
(BCQM I-III). The primitive step uses a short-hop/window parameter w in F|v;w], chosen with
w S Weon. This keeps the physical horizon (W) distinct from the local envelope used in the hop-
bounded kernel (w) and from the separate envelope parameter (o) used for exponential damping in
the operator-theoretic core. '

'Here the local window w is chosen < Weon for consistency with Paper III.



Purpose

This note records the primitive, pre-geometric rules of BCQM and a high-level, technical sketch
of how familiar spacetime notions emerge. The primitives do not assume a manifold, coordinates,
distances, or light cones. Spacetime structure appears only after coarse graining.

Empirics. Simulations (App. A, S1-S4) show self-averaging and inertial drift; power-spectral
knees at ~ 1/W¢ o, and Zeno-like scaling as o | 0 reproduce the predicted regimes (Fig. 1).

1 Primitive layer (no spacetime inputs)

Axiom 1 (Events). There is a (countable) set of events €. Events carry no coordinates or metric
data.

Axiom 2 (Connections with complex weights). Between events there are directed connections
(z — y) equipped with complex weights a(x — y) € C. The weight of a finite path v = (xg — 1 —
-+« = xy) is the multiplicative composition

{—1

Al = ] alz; = i), (1)

=0
Remark 4 (Polar form and boundedness). Edge weights admit a polar form a(z —vy) = a(x —
y) €@ with |o] < 1. We assume a local bounded-degree / bounded-weight condition ensuring the
path-sum K, is finite for all r.

Axiom 3 (Retarded, hop-bounded selection). Let E, € & be the last realized event (retarded
anchor). Fiz a window radius r € Z~o. The admissible candidates for the next event are those x
reachable from E, by paths of at most r hops. The selection probability is
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P(z|En) o |Kp(En—=2)|,  K(E,—z):= Y AQp] (2)
v:Ep—a
len(vy)<r
Only data within this hop-bounded neighborhood may influence the step.

Axiom 4 (Normalization and envelope). The hop-bounded kernel is modulated by a short-window
envelope Fv;o] € [0,1] and the selection is normalized:

K.(BEn—z):= Y AQ] Flyol, (3)
v:Ep—x
len(y)<r
T 2
B(z| By) = —ErEn 2 2)] (4)

EyeNT(En) K (En — y)[*

Axiom 5 (Local symmetry as automorphisms). Let N,.(E,) denote the subgraph induced by events
at hop-distance < r from E,, with all weights retained. The local symmetry group is the automor-
phism group that fizes E,,,

Gr(E,) = Aut(N,(Ey); En). (5)

The rule (2) is isotropic if
P(x|E,) = P(g-x| Ey) forall g € G (Ey). (6)

Bias (“direction”) may exist only insofar as it is encoded by the weight pattern itself, which reduces
G, (E,) to the stabilizer of that pattern.



Axiom 6 (Local remodeling (back-reaction)). When E, 1 is realized, edge amplitudes in its local
neighborhood are updated by a local, automorphism-compatible rule

ans1(x—y) = (L—n)an(z—y) + 1 G(an, rec(Epy1), ¢-mismatch), (7)

with 0 < n < 1. Here rec(Ep41) denotes amplified records (local, coarse-grained), and G preserves
G.-equivariance when the inputs do. This axiom encodes record bias and supplies the memory
required for inertia-like drift and curvature from inhomogeneities.

Remark 5 (Irreducibility and aperiodicity). On any connected, bounded-degree neighborhood and
for update rate n > 0 in Axiom (local remodeling), the induced Markov chain on local configurations
is trreducible and aperiodic (self-loops occur with nonzero probability), so standard LLN/CLT apply.

Guiding principles for remodeling maps G. (1) Minimal fine-tuning / maz-entropy drift:
prefer G that extremize a local functional [ preclog |K,|dV.

(2) Stability: require Lipschitz contractiveness of the update (1 —n)a+ngG; eg. 0 < n < % and
|G|| <1 give a global Lipschitz constant < 1 —n/2.

(3) Equivariance: G respects local automorphisms (no symmetry-breaking unless sourced by records).

Interpretational note (advanced branch). Throughout, “advanced” means the complex-
conjugate amplitude used for bookkeeping in forming |K,|?; no retrocausal influence or future-
to-past signaling is implied. Dynamics are strictly retarded along realized events.

Remark 6 (Why local remodeling?). With fired A and F, the selection rule defines a time-
homogeneous process whose statistics do not depend on which outcome just occurred; records do
not persist, inertia-like drift does not arise, and curvature cannot emerge from accumulated struc-
ture. A strictly local, automorphism-compatible update

ant1 =1 —n)a,+n Q(an, rec(Ep41), (;S—mismatch)

stores outcome information where it belongs (near the realized event), enabling stable records,
history-dependent drift (inertia), and curvature from inhomogeneities, while preserving locality and
no-signalling.

Definition 1 (Record field). For each node x, define a coarse-grained record density precn(x), e.g.
an exponential moving average over a hop ball around the last m realized events:

Precn+1() = (1 = A) precn(z) + ANz € Br(Ept1)}, 0<A<1.

Definition 2 (Local phase mismatch). For an edge (z — y) let A¢p(x — y) = argap(x —y) —
arg K, (x —y), the phase mismatch to the current kernel direction.

Definition 3 (Example remodeling map). A minimal, equivariant choice is

K.(x—y) _
Ag) = A —rne CI 5) = 161/0
g(anyprem ¢) S(prec(l')a ¢($—>y)) ’KT(J}—MJ)” s(u, ) ue
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Remark 7 (Stability and locality). Choosen € (0,1) and bound |G| < 1 to keep updates contractive
and local. The rule preserves G.-equivariance when inputs do.

Remark 8 (Stochastic anisotropy without bias). Starting only from events, directed edges with
complex amplitudes, and a retarded hop-bounded |K,|* selection, an automorphism-invariant prior
over edge amplitudes already yields stochastic anisotropy: the local phase-Hessian is almost surely
non-degenerate, so |K,|? focuses along principal directions without any imposed bias. In the early,
sparse regime—uwhen only M or so paths contribute—this directional skew is order-one, but it self-
averages down like 1/v/M as the realized network densifies, so coarse-graining recovers near-isotropy
while retaining a faint directional memory. This shows how orientation and smoothness co-emerge
from neutral primitives, with no background coordinates or preferred axes inserted by hand.

Definition 4 (Automorphism orbits). The group G,(E,) = Aut(N,(E,); E,) partitions candidates
into orbits O1,Os, . ... Isotropy means P( - |E,,) is constant on each orbit unless broken by the weight
pattern itself.

Remark 9 (No spacetime furniture at the primitive level). There is no manifold, metric, coordinate
chart, light cone, or rotation/boost group in the axioms above. All such structures appear only after
coarse graining the dynamics defined by (2).

Remark 10 (No vacuum at the primitive level). Energy and a “vacuum state” presuppose a back-
ground geometry with time-translation symmetry (to define energy) and a stress—energy operator.
Since the primitives posit neither a global time nor a metric, there is no notion of vacuum energy
here; only baseline phase, irreducible fluctuations, and local propensity correlations exist.

2 From events to spacetime (mechanism sketch)

This section outlines how time, causal structure, momentum/drift, and metric geometry can emerge
from the primitives.

Transfer operator and coherent advance

Define a linear transfer operator 1" on functions f : £ — C by

(Thly) = Y alz—y)flx). (8)

Ty

The hop-bounded kernel K, in (2) is the truncated path-sum, formally the (< r)-part of the
Neumann series for (I —T)~!. A realized chain Ey, E1, ... is generated by iterating the retarded,
hop-bounded step.

Order = proper time

The realized chain carries a natural order (by construction). After coarse graining, the mean hop-
count along the chain defines a scalar parameter 7 that plays the role of proper time. No continuous
time is assumed a priori; it appears as an emergent clock along realized chains.

Remark 11 (Clocking and fluctuations). Let H,, be the hop count along the realized chain. Then
H,/n — h almost surely, defining a proper-time parameter T < hn, with fluctuations Var(H,) =

O(n).



Causal envelope (“cones”)

If the local weight pattern is such that K, has negligible support beyond a growing ball in hop
distance, then in the continuum limit the support concentrates inside a causal envelope. With a re-
tarded kernel derived from a Lorentzian phase (at the emergent stage), support outside the forward
envelope vanishes; with a symmetric/smeared kernel, spacelike tails are exponentially suppressed
and cannot be used to signal.

Remark 12 (Strict vs soft causal envelope). If F' and the local weight phases correspond to a
retarded kernel, K, has zero support outside the forward envelope (strict causality). For sym-
metric/smeared F, spacelike tails are exponentially suppressed and cannot be used to signal; the
continuum limit remains causal.

Remark 13 (Casimir-type effects as differences). After emergence, boundary conditions modify
local propensity spectra; measurable forces arise from differences between configurations (Casimir-
type), not an absolute baseline. In primitive terms this is a change in link statistics within the
hop-bounded neighborhood, not a global vacuum energy.

Drift and effective momentum

In locally homogeneous regions, eigenfunctions of 7' carry phases. Writing T'f = Af with A\ = pe®,
the phase gradient Vi selects a drift direction for the realized chain within the causal envelope.
In the continuum map this becomes the familiar relation between group velocity v and quasi-
momentum: v = Vyw(k). Thus the bias in (2) is governed by spectral/phase properties, not by
any pre-imposed geometric coordinates.

Remark 14 (Frame gauge). Any choice of transverse basis along the chain is gauge; only frame-
invariant scalars (e.g. holonomies/solid angles, linking numbers) may influence | K,|?.

Principle 1 (Regularity for the continuum map). Assume local stationarity/ergodicity on scales
> r, finite second moments of hop-displacements under |K,|?, and mild mizing. Then coarse
graining yields a well-defined dispersion relation Q(w,k) = 0 and transport velocities v = Vyw.

Metric and Lorentz structure

Quadratic expansion of the phase near spectral extrema yields a dispersion relation Q(w,k) = 0.
If @ is hyperbolic with one distinguished sign, the effective large-scale geometry is Lorentzian.
Normalizing the maximal signal speed to ¢ recovers Minkowski structure at leading order, with
curvature arising from slow inhomogeneities of the weight pattern.

Relativistic action as an emergent phase

At the continuum stage one may identify the phase accumulated along a coarse-grained path with
an action S so that K ~ exp{ %S }; choosing S = —mec [ ds reproduces standard relativistic
stationary-phase behaviour. Importantly, this action is not an axiom of the primitive layer; it is a
compact description of the emergent phase.

3 Operational summary (one step)

From the last realized event E,:



Figure 1: Schematic: “Hello, World!” demonstration of inertial drift: local remodeling (Axiom 6)
plus phase alignment yields an approximately straight realized path on a lattice. We overlay the
best-fit line (thick) and observe RMSE and drift speed vs. (Weopn, o) for small update rate n (no
further tuning).

S1. Build the hop-bounded neighborhood N, (E,); compute the kernel K, (E, — -) as the path-
sum over < r hops.

S2. Draw E,1 with probability proportional to |K,(E, — x)}Q
S3. Set the new anchor E, < F,11 and repeat.

Causality, drift, and metric structure are properties of the long-run dynamics of this update rule;
they are not imposed at the primitive level.

Vacuum baseline (emergent convention). In the kinematic (non-gravitating) emergent de-
scription we set the homogeneous baseline to zero by convention; only excitations and spectral
differences contribute. If a small homogeneous residual survives once geometry is dynamical, we
package it as an effective cosmological constant A (treated in Paper V).

Scope. Vector/fermion mass generation and gravity are deferred: the present note specifies prim-
itives and the events—spacetime mechanism only.

4 Demonstration S1: Straight-line drift from local remodeling

Reproducibility (S1). Defaults: 15 x 15 lattice, n = 0.05, o = 3, r = 2, 200 ticks, linear phase
gradient p = (w/16,7/16), jitter amplitude 0.2. Metrics: drift speed and RMSE to best-fit line vs.
(Wcoha U)-
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Figure 2: Data-driven drift with jitter (n=200 steps).
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Figure 3: Power spectral density showing a corner near 1/We o, (AR(1)-style demo with We,, = 50).



Appendices

Appendix A Glossary

Event (E,) A realized node in the chain; the retarded anchor for the next step.

Hop-bounded window (7)
Maximum path length (in hops) considered coherent for a step.

Kernel (K,) Complex path-sum over all paths of length < r from anchor to candidate.

Automorphism group (G,)
Relabelings of the local neighborhood that preserve adjacency and weights and
fix the anchor.

Transfer operator (77)
Linear operator encoding one-hop propagation via edge weights.

Appendix B Simulation and numerics plan (hand-off to BCQM III-
V)

S1: Inertia from phase gradients. Lattice with a(z —y) = p e W=) 4 noise; show straight-
line convergence and RMSE vs. W, 0.

S2: PSD knee ~ 1/W,,,. Tick-time/transverse jitter PSD vs. Weep; locate knee and slopes.
S3: Zeno limit. Sweep o] 0 to confirm stall-rate scaling.
S4: Stochastic anisotropy. Measure anisotropy index A and verify 1/v/ M self-averaging.

S5: Efficient path computation. Use T%§ (power series / dynamic programming) with sparse
multiplication.

Whether the coarse-grained dispersion Q(w,k) is generically hyperbolic (Lorentzian) and why
3+1 is selected remain open; we flag these as targets for I11-V.

Outlook: entangled clusters. Throughout this note we have, on purpose, restricted attention
to a single effective particle: one event thread, one local hop-bounded frontier, and one short-time
kernel K,. By contrast, BCQM II treats entangled systems via joint g-waves on tensor-product
Hilbert spaces H4 ® Hp, with support restricted to eigenspaces of conserved totals such as Q.
The event-level realisation of that structure will require a primitive for clusters of threads rather
than isolated walkers.

The natural expectation is that an entangled cluster is represented by a configuration-space
graph (for example a subgraph Gap C G4 x Gp with vertices labelled by joint configurations
(z4,zp) and edges carrying joint amplitudes), and that the hop-bounded rule acts on this cluster
graph rather than on the marginal graphs separately. Locality is then enforced in the configuration
graph, whilst non-local correlations in emergent spacetime arise from the structure of the joint
g-wave and the restricted support of the cluster kernel (only configurations consistent with Qot
appear). Working out this “primitive for entangled clusters”, and showing that it reproduces the
BCQM II entanglement law without signalling, is deferred to BCQM IV-V.



Appendix C Operator-Theoretic Core (local transfer and trun-
cated kernels)

Remark 15 (Relation to prior pre-geometry). Causal-set approaches supply discreteness and
partial order but typically lack complexr path amplitudes and a short-window envelope; simpli-
cial/amplitude models supply phases but not our hop-bounded, locally windowed selection with an
empirical coherence scale Weon. The present primitives therefore target a different niche: amplitude-
first discreteness with tunable locality (via o) and an operational hook to experiments (via Weep ).

Principle 2 (Local boundedness). deg(z) <A, |a(z—y)| <a, Fly;o] <eler/o,

Let N, (z) denote the hop-bounded neighborhood of z. Define the local transfer operator 7' on
(>(N;) by

(Tf)(z) = Y, A=y fly), [|Ale—=y)<a, deg() <A, (9)
yEN(z)

Lemma 1 (Convergence of the hop kernel). Let T' be the single-hop transfer with envelope F|v; o] =
exp(—len(vy)/o) and bounded local bias aA. If

e V7 (14+alA) <1 (equivalently, aA < e¥/7 — 1),
then ||T|| <1 and K, =3 12, T* converges absolutely.

Sketch. With the envelope, ||T|| < e~'/7(1 4 aA). The stated bounds give e=1/7(1 4+ aA) < 1; the
Neumann series yields convergence. O

Selection as a Markov chain. With fixed (A, F,r, o), the realized-tick process is a time-
homogeneous Markov chain on nodes with transition probabilities

Pz —y) o« |K,.(z—1y)° (10)

Theorem 1 (LLN/CLT for hop counts). Assume Principle 2. Under irreducibility and aperiodicity,
the hop-count Hy, obeys a law of large numbers H, /n — h almost surely and a central limit theorem
with Var(Hy) = O(n).

Sketch. Applies standard Markov chain LLN/CLT for bounded increments. O

Appendix D Equivariance, symmetry breaking, and anisotropy

Let G, act by automorphisms on N,.. Assume A and F are G,-invariant.

Proposition 1 (Equivariance). If A and F are G,-invariant, then probabilities are constant on
Gy-orbits. In particular, symmetry cannot be broken by the selection rule alone.

Sketch. K, is G,-equivariant, hence |Kr|2 is constant on orbits. O

Proposition 2 (Converse: anisotropy requires symmetry breaking in A). If empirical probabilities
are not constant on orbits, then A (or F') breaks G,-invariance.

Sketch. Contrapositive of the prior proposition. O



Appendix E Envelope choice and causal support

We adopt an explicit, orbit-invariant envelope family

Flyio] = exp(— len(v)/0), (11)
though any G,-invariant function of hop-length would suffice.

Lemma 2 (Soft causal envelope). With the above F', K, decays exponentially outside a soft cone;
as o | 0 the process stalls (Zeno-like), while increasing o widens the effective cone.

Sketch. Combine path counting with exponential damping to bound |K,|. ]

Appendix F Phase curvature and stochastic anisotropy

Proposition 3 (Stochastic anisotropy, informal). With i.i.d. phases ¢ ~ U[0,27), directional skew
of the local phase-Hessian scales ~ M~1/2 as path count M grows (random-matriz concentration).
Conjecture: the M~Y2 law holds under the finite-hop kernel K,.; we provide a proof sketch in
Appendiz G.

Remark 16 (Why complex amplitudes and | - [*?). We adopt an amplitude-first stance: multi-
plicative propensities must interfere to reproduce standard quantum composition rules; this forces
complex phases. Dutch-book/equivariance arguments then single out the modulus-squared as the
consistent probability map.

Remark 17 (GKLS origin of the envelope). A short-window envelope arises from local dephasing
in a GKLS generator: coarse-grained dwell times lead to exponential damping along longer paths,

legitimizing F[y; o] as above. This connects the primitive envelope with the empirical coherence
scale Weon noted in BCQM I-11.

Remark 18 (No-signalling). Joint kernels are products of local hops; single-outcome selection with
local coarse-graining of partner outcomes yields marginals that are independent of distant knobs.

Appendix G Sketch of the RMT /concentration argument

Let K, = Y M_ @, be the hop-bounded path-sum with bounded |a,| < 1 and i.i.d. phases
ém ~ UJ0,27) (or, more generally, sub-Gaussian with zero mean). Local “phase curvature” quan-
tities (entries of the Hessian of arg K, near a stationary direction) can be written as averages of
sums of bounded, mean-zero random variables, or equivalently as the operator norm of a sum of
bounded random matrices after linearization about that stationary direction.

By scalar Bernstein/Hoeffding concentration (or matrix Bernstein for the operator form), for
each fixed component we obtain

1 < ;
— Xm‘ = Op(M™2),
W

with tails of the form Pr{- >t} < 2exp( — cMt?) for some ¢ > 0 set by the envelope bounds and
bounded hop radius. Thus the directional anisotropy (skew of the local phase-Hessian) exhibits
the self-averaging law ~ M~1/2 as M grows. This justifies the informal scaling claim in the main
text under the finite-hop kernel K, and motivates the use of an anisotropy floor oc M~1/2,.
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