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Abstract

This work presents the technical development of the BCQM III framework, which posits
spacetime as an emergent causal graph of irreversible “Events”. We define the mathematical
formalism for the gq-wave, the informational field that governs the graph’s growth, and detail
a stochastic algorithm that simulates the creation of a particle’s worldline. The primary
result of this paper is to demonstrate, through both simulation and analytical argument,
that the classical principle of inertia is an inevitable statistical consequence of the q-wave’s
phase coherence. This provides the foundational engine for the quantitative predictions of
the BCQM framework. Clarification. In this paper, “advanced” refers only to the advanced
Green’s-function branch used in BCQM to keep the amplitude description time-symmetric.
It is mot evolution “back in time,” entails no future-to-past influence, and cannot be used
for signalling; all operational ordering is along the ordinary chronological axis. Outcome
weights arise from pairing the forward (¢*) and coherence/advanced (¢~) contributions at the
candidate event, w = |K|?; in the normalised sampling step the advanced factor is absorbed
into the denominator.

1 The Q-Wave as a Propensity Field

Interpretation note (no retrocausality). Dynamics and realisation here use the retarded
component 7. Any mention of an “advanced” branch is purely mathematical—amplitude
bookkeeping to respect time symmetry—and is not read as a physical process propagating
backwards in time. Causes, records, and interventions remain ordered along laboratory time.

1.1 Retarded component and invariant action phase

We assign the retarded propensity to each candidate successor event E' € 0F,, via the invariant
action increment:

YH(E) = N7V/2 exp(,% AS(FE, En)), AS = p, Azt (1)

with Az# := 2/* — 2. For a free massive particle, AS = —mc? Ar; for massless propagation take
pu = hk, and AS = hk,Az". The normalisation factor A" ensures either Y ez, [T (E')* =1
(discrete frontier) or [y~ [¢7|* un(dE’) = 1 (continuous frontier), where py, is the invariant
measure induced on the frontier.

Realisation law (preview). Given the frontier dF,, the next realised Event is drawn
according to
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a weighted random choice. This implements intrinsic stochasticity; it is not a drift to the
dominant channel.

t*/t~ pairing (probability law). The weighting in (2) is the pairing of the forward (¢1)
and coherence/advanced (¢~ ) contributions at the candidate event E’, i.e.

w(B') =™ (B~ (B) = [0 (B, o7 (E) =y (E)"

In the normalised sampling step any common multiplicative factor in 1~ cancels between
numerator and denominator; this is what is meant by saying the advanced factor is “set to 1”
(absorbed into the normalisation). We apply the modulus—square law here (motivated by t*—¢~
pairing); the derivation under explicit axioms is provided in Analytical Proofs for BCQM [1].

See also App. 7? for the t*/t™ pairing and the “set to 17 normalisation shorthand.

Remark. The advanced component is retained only as the conjugate co-contribution at the
candidate event: ™ (E') := T (E')*. The outcome weight is therefore the ¢/t~ pairing
w(E") =y (E) ¢~ (E") = |¢*(E")|?, and the normalised sampling law follows directly. When
authors say the advanced factor is "set to 1", this is shorthand for its absorption into the
normalisation at the probability step. We apply the modulus—square law here (motivated
by tT—t~ pairing); the derivation under explicit axioms is provided in Analytical Proofs for
BCQM [1].

Clarification. The advanced branch is retained to enforce time-symmetric pairing at the event
(1~ = 9**); propagation and local dynamics use ¥t on the frontier. There is no retrocausal
signalling: realised outcomes do not depend on future settings.

The BCQM II framework [2] proposes that reality is a growing causal graph of irreversible
quantum events. The growth of this graph is not arbitrary; it is governed by an information
field, the g-wave, which serves as a blueprint for potentiality. To construct a predictive model,
we must first translate this conceptual role into a concrete mathematical object.

1.2 State Representation and the Future Boundary

In our event-based ontology, the state of a particle is defined entirely by its most recent realised
Event.

e The state of a particle is specified by its last Event, F,, which is characterized by its
emergent spacetime coordinates, z# = (ct,, &), and its four-momentum, p* = (E/c, p).

o The Future Boundary is the set of all possible Events, { F, 11}, that are causally accessible
from F, in a single "tick". For the purpose of this model, we can visualize this as a discrete
set of adjacent nodes on an underlying computational lattice.

The g-wave amplitude on the future boundary is the retarded function " (E,11), and event
growth uses ¢+ alone.

Remark. The advanced component 1~ is retained to reflect BCQM’s two-boundary perspective;
it constrains propensities but does not generate new events. Event growth uses 1. For a single,
free particle, the advanced component, 1~ , which enforces global consistency, is uniform and
can be absorbed into the normalisation constant. The crucial dynamics are contained in the
retarded component, 1.

No retrocausality. Probabilities on the frontier are computed from amplitudes available at the
current step. Changing future settings cannot affect already realised Events; reduced statistics
at one site remain independent of any future choice elsewhere.



1.3 The Mathematical Form of the Retarded Q-Wave (¢")

The retarded component, 1™, propagates from the definite past Event, E,, to the field of
potential future Events, {E,+1}. For a free particle, this propagation must take the form of a
discrete plane wave.

The general form is:
O (Eps1) = A exp(ig) (3)

where A is a normalisation amplitude and ¢ is the phase. To ensure the laws of our emergent
spacetime are consistent with special relativity, the phase ¢ must be a Lorentz-invariant scalar.
We define the phase using the dot product of the four-momentum, p#, and the four-displacement,
Agh = b | —

pulAzt
_ 4
¢ =22 ()
Using the (+, —, —, —) metric signature, the complete mathematical formula for the retarded
component of the g-wave is:
(P >
T (Ent1) = A-exp 7 (0 (Tn+1 — Tn) — E(tng1 — tn)) (5)

This choice is mandated by relativistic invariance and its direct connection to the quantum
mechanical propagator. It is this phase structure that gives rise to the interference phenomena
that will be shown to produce inertia.

Regulator. Any underlying computational lattice is used solely as a regulator; our intent is the
continuum (or Lorentz-covariant Poisson-sprinkled) limit, so physical predictions do not depend
on a particular slicing or grid.

2 A Stochastic Graph-Growth Algorithm

With a concrete mathematical form for the g-wave, we now define the "engine" of the theory: a
computational algorithm that simulates the growth of a particle’s causal event chain. A Monte
Carlo method is the natural approach for modeling this process. Causality note. The graph-
growth procedure is strictly forward-ordered: each realisation conditions only on established
records and the current frontier. No future-to-past influence is assumed or permitted.

Companion note. A full development of the minimal primitives and the hop-bounded realisation
law is given in the companion “Primitives” note [3].

2.1 The Algorithm

We present the process in the form of pseudocode (Algorithm 1).

Propagation-and-realisation window. We parameterise evolution by the particle’s proper
time A7 (for massive trajectories) or by an affine parameter (for massless ones). Between
collapses, the propensity field is represented as a narrow wavepacket centred at the realised
event E, with phase gradient set by p*. The packet is propagated coherently for a finite window
AT, which in the simulation corresponds to a thin spatial slab of thickness L = vy A7 in the lab
frame, where v is the characteristic speed used to set the lattice spacing and time step. Event
realisation is then sampled once from [¢)|? on this frontier slab.

p(x) = Nexp[ — (IZ§§)2 + %pu(:c“ — x‘,f)] (6)



The packet is propagated coherently for a finite window A7 (or L micro-steps of a short-time
kernel K), and the next Event is then sampled once from |¢,|? on the frontier. This delayed
realisation permits multi-path interference within the window and yields a geodesic bias consistent
with the stationary-phase argument.

Algorithm 1 Stochastic Event Chain Growth
1: function GROWEVENTCHAIN(Ey, p*, Nyicks, 0, AT, L)
2 Chain < [Ep] > Initialize the chain with the first Event
3: Ecur'rent — EO
4: for n < 1 to Nyers do
5
6

Packet + InitPacket( Ecyrrent, P, o) > Narrow Gaussian, Eq. (6)
Packet < Propagate(Packet, A1, L, K) > Coherent window of duration A7 and slab
thickness L = vgA7 via short-time kernel K

7: Boundary < GetFutureBoundary(Packet) > Candidates on the thin slab (frontier)

8 Probabilities +— FrontierProbabilities(Packet, Boundary) © applied law: P o |1 |2
(derivation in [1])

9: Eselected < StochasticSelect(Boundary, Probabilities)r> single realisation / collapse

10: Chain.append(Esciected)

11: Ecurrent < Eselected

12: end for

13: return Chain

14: end function

2.2 Interpretation of the Steps
2.3 Regulator and continuum limit tied to W,

We make explicit how the lattice and windowing co-move so that the model admits a clean
continuum limit and a clear dependence on the coherence horizon W,,,. Let a be the lattice
spacing and At the time per growth step, and define vy = a/At. Choose per-step attenuation
and a real window

At )’

ka
2 Weon g(lﬁ genv) = eXp( - )7 lony = 5'00 Weohs B> 0. (7)

e
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Notation. We reserve w(z) for local outcome weights (the ¢+ —¢~ pairing), Weon for the coherence
horizon, and /e, for the environment window length in the regulator.

Take the continuum limit
a

a, At — 0, W= Ay fixed, leny = B g Weon fixed, (8)
so that ka is a path arclength and g remains a positive, real window tied to W,,. Under this
scaling, the linear-response analysis yields the emergent inertial parameter meg W;;ﬁ up to
geometry and phase-averaging factors. We introduce a real, positive environment window
length \(\lenv\), which sets the exponential damping of long paths in the regulator. With
\(\lenv = \beta v_0 \Wcoh\), the window scale co-moves with the coherence horizon.

o Propagation (Lines 5-6): This loop implements the retarded component of the g-wave.
It "paints" the future boundary with complex amplitudes, creating a field of potentiality.

o Realisation (Lines 7-9): This is the physical collapse at the coherence horizon Weo,. We
apply the modulus-square (Born) law, P o |1 |?; the derivation under explicit axioms is
provided in Analytical Proofs for BCQM [1]. A single, definite outcome is then realised,
making history definite.



o Update (Line 10): The realised Event is added to the history of the particle, and the
process repeats from this new state.

This algorithm provides the core mechanism of the BCQM III framework. In the following section,
we analyze the statistical properties of the chains it produces to demonstrate the emergence of
classical kinematics.

3 Inertia as a Consequence of Phase Coherence

Equivalently, we use the invariant action phase exp(i AS/h) with AS = p, Az# as established
in Section 1.

This section presents the central result of this paper: the demonstration that the classical
principle of inertia is an inevitable statistical consequence of the quantum dynamics defined
by the g-wave and the growth algorithm. Inertia is not a fundamental law, but an emergent
property of phase coherence. Two-time symmetry vs. causal order. Time-symmetric amplitude
bookkeeping (when used) does not imply retrocausal dynamics; the emergent geodesic arises
from many forward-ordered realisations along t+.

3.1 The Physical Principle: Constructive and Destructive Interference

The stochastic realisation process detailed in Algorithm 1 does not produce a simple random
walk. The choice of the next Event is biased by the phase of the g-wave. For a free particle, the
g-wave (Eq. 5) takes the form of a plane wave. The probability of realising a successor Event is
highest where the amplitudes for all contributing paths interfere constructively.

e The Path of Maximum Coherence: The path where the phase remains stationary is
the one that lies along the direction of the particle’s momentum, p. Along this "straight
line" geodesic, the phase accumulates linearly, and all adjacent potential paths have nearly
the same phase, leading to maximum constructive interference.

e Suppression of Deviations: Any potential path that deviates significantly from this
geodesic will involve a rapid change in phase. The amplitudes for these paths will
destructively interfere with each other, leading to a suppressed probability of being realised.

Therefore, while any single "tick" is probabilistic and exhibits a quantum jitter, the overwhelming
statistical trend is for the event-chain to follow the path of maximum phase coherence.

3.2 Simulation Results and the Emergence of (Geodesics

All simulations were performed using the parameters detailed in Appendix ?77.

As a visual summary, Figure 1 shows many realised threads (thin), their mean (thick), and a
95% band at b = 0; the linear growth of the mean for ¢t < W,y foreshadows the conserved coarse
velocity established below.

Empirical checks. Figure 2 reports the ensemble mean displacement at b = 0. The linear
growth for ¢ < W confirms conserved coarse velocity in the unbiased regime, in agreement
with the inertial coarse—graining of §3. Figure 3 shows the small-drive response sweep, where an
effective inertial parameter meg is extracted from the slope d(v)/db; a power—law dependence
on Weep is evident on log-log axes and is consistent with the prediction meg o VVCEI? (derived in
Appendix ?7) and shown to be a robust result insensitive to numerical choices (see Appendix
?? for stability analysis), under the regulator scaling stated earlier. Finally, Figure 4 plots the
velocity autocorrelation against the scaled lag lag/W,o, and exhibits a collapse of the curves,



indicating a correlation timescale proportional to W, and thereby supporting the window—tied
dynamics.

Operator—theoretic derivations and proof details are provided in Analytical Proofs for BCQM [1].
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Figure 1: Trajectory ensembles at b = 0: multiple realised threads (thin lines) with mean (thick
line) and a 95% band (shaded). The linear growth of the mean for ¢t < W}, foreshadows the
conserved coarse velocity established below.
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Figure 2: Mean displacement E[Az(t)] at b = 0, showing conserved coarse velocity over the
window ¢ < Wep.



Fig. 3 mesr vs Weon
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Figure 3: Effective mass versus coherence horizon. We plot meg(Weon) extracted from the linear
response to small drive b as a function of W}, on log-log axes. The best-fit straight line (solid)

has a slope close to —2, consistent with the theoretical scaling meg o Wc:)ﬁ
Fig. 4 Velocity autocorrelation collapse
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Figure 4: Velocity autocorrelation C,(lag) plotted against the scaled lag lag/W,o for multiple
Weon- The curves collapse, indicating a correlation timescale proportional to W,y

Companion note. This demonstrates that the classical, deterministic trajectory of a particle is
the statistical mean of an underlying quantum-stochastic process. The geodesic is an emergent

property.
3.3 Connection to the Path Integral Formalism

This result can be understood analytically by drawing a parallel to the Feynman path integral
formalism. The probability of a particle transitioning between two points is the squared modulus



of the sum of amplitudes for all possible paths between them.

Interference across a coherent window. In practice, interference arises because the
propensity packet is propagated coherently for a finite window A7 (or L short sub-steps of a
kernel K') before a single realisation is made. Equivalently, amplitudes to each candidate on
the thin slab are summed via repeated application of K, so that stationary-phase contributions
dominate and bias the realised event toward the geodesic direction.

2
P(b, (1) — Z eiS[path]/h (9)

paths

In the classical limit, the path that dominates this sum is the one for which the action, S, is
stationary—the principle of least action. Our model is the discrete, event-by-event realization of
this principle. The "path of maximum phase coherence" is precisely the path of stationary action,
and our stochastic algorithm is the mechanism that ensures this path is the most probable
outcome.

The simulation exposes explicit control knobs—packet width o, propagation window A7 (or step
count L), and a reproducibility seed—whose combined effect sets the jitter amplitude around
the mean path; this amplitude is analysed in Paper IV as the inertial-noise PSD governed by
the horizon W_gy,.

Reproducibility and code availability. A reference implementation and configuration files
(matching Algorithm 1 step-for-step) are available in a public repository with a README.md,
exact commands to regenerate Figs. 1-4, and a CITATION.cff [4]. Sweep configs and outputs
are archived with a DOI.

Scope, limitations, and hand-off to BCQM IV

This paper works entirely within the emergent spacetime regime of the BCQM programme.
We assume that, at sufficiently large scales, the web of quantum events admits an effective
Minkowski description with a well-defined proper time and action functional. In particular,
the phase structure used in Algorithm 1-—the increment AS ~ p,Az" and its free-particle
specialisation AS ~ —mc?AT—is taken as given at this continuum level. Our goal here is not to
derive this effective action from the primitive event-graph rules, but to show that, given such
an emergent background, a finite coherence horizon and a hop-bounded growth law already
suffice to produce classical inertial motion and an effective mass scaling meg o W;gf The
derivation of the continuum phase structure itself—and of the underlying Lorentzian geometry
and dimensionality—from the minimal BCQM primitives is deferred to future work in this series
(BCQM IV and V).

A natural objection is that using a phase structure AS ~ p,Az* before deriving spacetime
might be circular. It is not. This is standard effective field theory methodology: one works at
a given scale with the appropriate degrees of freedom and coupling structure, and tackles the
UV completion or emergent infrared description separately. Just as lattice QCD uses discrete
Wilson actions chosen to flow to the continuum QCD Lagrangian through universality, we
conjecture that generic local graph-phase rules—subject to appropriate symmetry and locality
constraints—will reproduce the relativistic action in the emergent regime. The micro-to-macro
universality argument, including the emergence of 3 + 1 dimensions and Lorentz invariance
as coarse-grained statistical symmetries, is the subject of BCQM IV-V. Here we provide the
engine that operates on emergent spacetime; the derivation of that spacetime from primitives is
a separate (and harder) problem.



The jitter power spectral density and the inertial noise floor, while motivated here by the
event-chain growth picture, are quantified in the follow-on work (BCQM IV). The present paper
establishes the stochastic growth model and the scaling meg VVC_}? ; spectral character and
experimental readout are deferred.
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