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Provenance and Scope

This technical note complements the BCQM preprint and focuses on analytic, model-
agnostic statements about (i) the probability assignment over channels and (ii) an opera-
tional recoverability horizon W for coherence under standard open-system dynamics and
system-only controls. For context, see the BCQM preprint [1] and the open code repos-
itory (programs for the toy model and double-slit simulations). No new dynamics are
introduced beyond orthodox quantum mechanics; all results are framed within standard
Hilbert-space and GKLS formalisms.

Analytical Proofs — Step 0: Assumptions and Scope

Hilbert-space setting. All systems are modeled on a complex, separable Hilbert space
H. In finite dimensions we assume dimH > 3 for direct application of Gleason; in
dimH = 2 we invoke the POVM extension (Busch). Composite systems use tensor
products.

Measurement events (channels). For any context, the measurable outcomes are
represented by a PVM {II;} (or a POVM {E;}). BCQM “p-wave channels” are the
orthogonal subspaces II;H associated with that context.

Admissible probability map. A map P from projectors to [0, 1] is admissible if
it is (i) normalized, (ii) finitely additive on sums of orthogonal projectors, and (iii) non-
contextual (depends only on the projector, not the particular decomposition). These are
the hypotheses needed for the Gleason/Busch representation P(II) = Tr(pIl). |2, 3]

Dynamics. Unitary evolution is generated by a Hamiltonian H(t) on H. Open-
system evolution is described by a GKLS master equation [4, 5, 6] when needed; for the
W-bound we assume a dephasing (or more general GKLS) channel with a well-defined
coherence functional D(t) = exp(—fg ['(s) ds> € [0, 1].

Control constraints. “System-only” recovery refers to CPTP maps implementable
without access to the environment. For V' we restrict to a physically motivated class Rpnys
(system-ancilla operations within hardware limits). For the W-bound in Steps 2-4 we
restrict “system-only” to phase-covariant controls that commute with the dephasing twirl
(no ancilla, no external phase reference).

Interpretation. Under these assumptions, Steps 1-5 yield analytic consequences
used in the main text; Step 6 is a conjecture until R,y is fixed by experiment.



Analytical Proofs — Step 1: Born as Unique Quadratic
Measure

Goal. Replace informal assertions with a compact, self-contained derivation that under
BCQM'’s minimal assumptions the only consistent probability assignment for a channel
amplitude a € C is P(a) = |a|* (up to an overall normalization fixed by »7.P(a;) = 1).

Assumptions (A1-A5)

We work in a fixed measurement context with an orthonormal basis of mutually exclusive
channels { |e;) } so that a prepared state is a vector of complex amplitudes 1) = >, a; [e;).
We assume:

(A1) Additivity for exclusive alternatives: For any disjoint index sets J, K,

P(Yale) + P(Xarlen)) =P( X arlen)).

jeJ keK reJUK
(A2) Normalization: ), P(a;e;)) = 1.
(A3) Global phase invariance: P(c?¢) = P(3) for all real 6.

(A4) Unitary invariance of structure: For any unitary U acting within the span of
a set of exclusive channels, probabilities are assigned to outcomes (projectors), not
to labels; hence relations implied by (A1-A3) must hold in any orthonormal basis
obtained by a unitary mixing.

(A5) Regularity: P is continuous in each amplitude.

Assumptions (A1-A3, A5) are the usual consistency requirements; (A4) is the statement
that only the orthogonal decomposition (the event algebra) matters, not the choice of
basis for that decomposition.

Step 1: Two-channel mixer functional equation

Restrict to the two-dimensional subspace spanned by {|e1) , |e2)} and define ¢ = ale;) +
bles), with a,b € C. Introduce the 50-50 unitary “mixer” H (Hadamard up to phases):
le1) + le2) le1) — [ea)
u) = ——F——=, Ju)="—"—F>—,
V2 V2
so that in the {|u), |v)} basis the state reads
a+b ) + a—1b )
u V).
V2 V2
Let p(z) denote the probability assigned to a single complex amplitude z in a one-channel

branch (so P(z|-)) = p(z)). By (A1-A4), additivity over the exclusive outcomes |u) and
|v) gives

=

p(22) +p(2) = pla) + () 1)
Multiplying (1) by 2 and defining f(z) := 2 p(z) we obtain the parallelogram identity
fla+b)+ fla—0b)=2f(a) +2f(b) for all a,b € C. (2)
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Step 2: Characterization of solutions to the parallelogram identity

It is a standard result (Jordan—von Neumann) that a continuous function f : C — R
satisfying (2) must be a quadratic form of the underlying real vector space, i.e. there
exists a positive semidefinite Hermitian matrix () such that

(3)

Ima

f(a) = [Rea Tma] Q {Rea] .

By (A3) global phase invariance, f(ea) = f(a) for all §, which forces @ to be a scalar
multiple of the identity on R?. Hence there exists a constant ¢ > 0 with

fla)=cla? = pla)=la* (1)

Step 3: Fixing the constant by normalization

For a normalized state >_; la;|* = 1, assumptions (A1-A2) give >_;pla;) = 1. Using (4),
we get . 5la;j|* = 1 = ¢ = 2. Therefore

p(a) = |al?, and hence  P(j) = |a;|*.

Conclusion

Under additivity for exclusive alternatives, basis (unitary) invariance, global phase invari-
ance, and continuity, the only consistent probability assignment for channel amplitudes
is P(j) = |a;|*. This derivation is self-contained, independent of Gleason; it coincides
with the standard Born rule and matches the ensemble interpretation used in BCQM.

Analytical Proofs — Step 2: Collapse Horizon as Re-
coverability Threshold

Theorem (Recoverability bound for ). Let p(t) be the reduced state of the system
evolving under a dephasing (or more generally GKLS) channel whose coherence factor
obeys

D(t) = exp( —/OtF(s) ds) € [0, 1], I'(s) > 0.

Fix a target fidelity threshold F, € (1/2,1) and define the optimally recoverable fidelity
with phase-covariant, system-only controls R (no ancilla, no external phase reference) by

Fopt(t) = Sl7lzp F(pcoh7 R[p(t)])7

Recovery class. We restrict to phase-covariant, system-only operations: unitary
rotations and dephasing-covariant, unital CPTP maps acting on the system Hilbert space,
with no ancilla and no external phase reference. Equivalently, if 7 denotes the dephasing
twirl in the pointer basis, we require R o7 = T o R, which forbids injecting fresh
coherence. Such operations can re-orient coherence but cannot increase its magnitude
created by dephasing.



Scope. For higher-dimensional systems, interpret D(t) as the coherence factor of the
targeted two-level coherence block relative to peon; the bound applies to that block and
thus to the task.

where peon is a coherent reference and F' is Uhlmann fidelity [7]. Then for all ¢ > 0,

Fo(t) < (14 D(1)).
Consequently the collapse horizon defined by
Wo=inf{t > 0: Fou(t) < F.}
satisfies the sufficient condition
D) < 2F,—-1 = t>W.

For exponential dephasing D(t) = e~ this yields the closed-form bound

1 1
W > ; IHZF*——I'

Proof (sketch). Fidelity is monotone under CPTP maps (data processing). Under
pure dephasing the off-diagonal elements are multiplied by D(¢) while populations are
preserved. For the admissible recovery class above, operations commute with the dephas-
ing twirl and cannot increase transverse Bloch-vector length; they can only re-orient it.
Choosing peon as a pure equatorial state (e.g. |+x)(+z| for qubits), the maximal attain-
able overlap is achieved by rotating the Bloch vector, giving Fop(t) < 2(1+ D(¢)). The
threshold condition and exponential case follow immediately. O

Operational meaning. Once D(t) falls below 2F, — 1, no admissible system-only,
phase-covariant recovery can reach the target coherent reference with fidelity exceeding
F,. This turns the intuitive “point of no return” into an analytic threshold for collapse.

Experimental intuition. Experiments that catch and partially reverse a quantum
jump mid-flight succeed only when intervention occurs before a practical point-of-no-
return; in our framing, this is the pre-W region [8]. Repeated failures beyond that
window provide an operational lower bound on W in the same hardware.

Analytical Proofs — Step 3: Standard Constraints

Lemma (Joint probabilities coincide with QM). Let p be the system state on
Ha®@Hp and let {111}, {TIP} be PVMs (or POVMs) describing a measurement context.
Under the admissible probability assignment of Step 1, the joint outcome probability is

P(a,b) = Ti{p (11} @ I1})].

Sketch. By Step 1, any admissible, non-contextual assignment is represented by a
density operator p and P(-) = Tr(p-) on the event algebra. Tensor-product structure
yields the displayed form for product contexts.

Representation remark (Gleason/Busch). [2, 3] On Hilbert spaces of dimension
> 3, any countably additive, non-contextual probability assignment on the projector
lattice admits a density-operator representation P(II) = Tr(pll) (Gleason). In dimension
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2, the same representation holds for POVMs (Busch). Our Step 1 result does not use
these theorems; it fixes the unique quadratic amplitude measure under (A1-A5). Here
in Step 3 we adopt the standard operator representation to propagate constraints (no-
signalling, Tsirelson, Sorkin).

Corollary (No-signalling). Marginals are independent of the distant choice:

Z]P’ a,b) = Ti[(Trpp) 112,

which does not depend on Bob’s setting. Hence BCQM respects no-signalling.

Corollary (Tsirelson bound) [9]. For any dichotomic observables Ay, A; and By, By
with ||4;]| <1, || B;]| <1, the CHSH value

S = (Ay® By) + (Ag @ By) + (A1 @ By) — (A1 ® By)

satisfies |S| < 21/2 because expectations are quantum traces with a positive state p and
bounded operators—exactly the usual derivation of Tsirelson’s bound.

Corollary (No third-order interference; Sorkin). [10] Since P is quadratic in
amplitudes (Step 1), inclusion—exclusion for triple-slit experiments yields vanishing third-
order interference term I3 = 0, as in standard quantum mechanics.

Remark. These constraints do not require simulations: they follow solely from the
admissible probability map (Step 1) and the standard operator algebra on the Hilbert
space.

Analytical Proofs — Step 3b: Two-Time g-Wave = Den-
sity Operator (CTP)

Claim. Let ¥(¢;,t_) be the BCQM two-time object. Define the kernel Ky(ty,ts) =
U(ty,ty) U(ty,tz)* and the operator

p(ts) = /dt Uty t-) Wty 1),

with the integral understood as a sum/integral on the relevant measure space. If the
isolated evolution along ¢, is unitary U(t,,0) generated by H(t), then

p(t+) = U(t-l-?O) p(O) UT(t-HO)'

Assumptions. (i) U is square-integrable in ¢_ so that the integral exists; (ii) the ¢_
branch represents the conjugate evolution (closed-time path) of the amplitude; (iii) p(0)
is formed as [ dt_ W(0,t_)W(0,¢_)*.

Sketch. In the Schwinger-Keldysh/CTP formalism, the generating functional evolves
a ket forward and a bra backward; the ¢t_ dependence tracks off-diagonals. Unitary
evolution on ¢, acts by conjugation on the outer product | (¢, ))(1(t1)|, yielding the
claimed expression for p(t,). This pins the two-time language of BCQM to the standard
density operator machinery.



Analytical Proofs — Step 4: Worked Ramsey Example
for the " Bound

Setup. Consider a single qubit subjected to a standard Ramsey sequence [11]: a 7/2
pulse prepares |+z) = (|0) +]1))/v/2, followed by free evolution for time ¢, then a second
/2 pulse and readout in the computational basis. Assume pure dephasing with rate ~
during the free-evolution window, modeled by the GKLS master equation

pt) = ~(ozpt)o. — p(t)) /2,
which yields an off-diagonal coherence factor
D(t) = e .

Ramsey signal. The measured Ramsey fringe contrast equals the magnitude of the
off-diagonal element,

Ct) = lpa®)l/lpor(0)] = D(t) = ™.

Thus the decay of visibility is exponential with rate ~.

Recoverability threshold and W. Let F, € (1/2,1) denote a target fidelity for
“successful rollback” to a coherent reference using phase-covariant, system-only control
(no ancilla, no external phase reference). From Step 2 we have the bound

Foi(t) < 2(1+D() = 3(14+e).

(This uses the recovery class defined in Step 2.)
Define the collapse horizon

W o= inf{t > 0: Fon(t) < Fi}.

A sufficient condition to have crossed W is

11
< F, -1 = t > -1 .
© o= = 5 2R —1

Numerical illustration. For a typical coherence time ™! = 10 us and a fairly
stringent threshold F, = 0.9, we obtain

1 1
w z — lnﬁ ~ 0.22377 1 =~ 223 us.

Sharper control or a less stringent F} increases the recoverable window; stronger dephasing
(larger ) shrinks it correspondingly.
Generalization. If the dephasing rate is time-dependent with cumulative rate fg [(s) ds,

the same reasoning yields
1

w
I(s)ds > 1
/0 (s)ds 2 Ingp—s,

which reduces to the exponential case when I'(s) = .

Interpretation. The Ramsey example identifies W as the first-passage time beyond
which phase-covariant, system-only recovery cannot restore the target fidelity. This gives
W a concrete, experiment-facing meaning independent of simulations.

This calibration picture aligns with standard open-system treatments of Ramsey de-
phasing and with mid-flight intervention experiments |6, §].
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Analytical Proofs — Step 5: Delayed Choice and Quan-
tum Zeno

Proposition (Delayed choice as contextual reset). Let U(te,t;) denote unitary
dynamics generated by a time-dependent Hamiltonian H(¢). Suppose a measurement
context switch occurs at time ¢, that replaces projectors {II,} with {II} } for ¢t > t;. Then
for any initial state p(0), the probability of outcome k at time t > ¢, is

P(k) = Tr|p(0) U'(ty,0) 1T, U(ty, 0) |,

which coincides with the standard quantum prediction for delayed-choice experiments.

Sketch. By Step 1, admissible probabilities are given by Tr(p-) on the event algebra.
Evolving to t,, then evaluating with the updated projectors {II}.} yields the displayed
form, independent of whether the choice of context was made “late”. No retrocausality is
implied; the context defines the event algebra at readout.

Proposition (Quantum Zeno as pre-W resets). Let p(t) obey a GKLS master
equation with coherence factor D(t) as in Step 2. Apply a sequence of ideal non-demolition
interventions (projective checks) at intervals At, all within the pre-horizon regime t < W.
Then the survival probability for the initial subspace is

S(t) = exp(—/ot Aot () ds),

with an effective hazard Mg (s) that is reduced as At — 0, yielding the Zeno effect
(inhibition of decay /coherence loss), consistent with the BCQM notion that irreversibility
has not yet crossed the recoverability threshold W.

Sketch. For short At, the dephasing integral fonm I'(s) ds is broken into small segments
with resets that keep D near unity between checks; in the limit one obtains quadratic-
in-time short-time survival and a suppressed effective hazard. This is the standard Zeno
derivation phrased through the recoverability lens of Step 2.

Analytical Proofs — Step 6: Conjecture for the Re-
coherence Horizon V

Motivation. The collapse horizon W (Steps 2-4) formalizes when system-only recovery
of coherence is no longer possible above a target fidelity. By symmetry of the BCQM
picture, we introduce a mirror notion—a re-coherence horizon V—that marks when suf-
ficient conditions exist for coherence to become inevitable under admissible controls.

Admissible controls. Let R, denote physically permitted recovery maps: CPTP
maps implementable by system + ancilla unitaries with experimentally allowed couplings,
bandwidth, and noise. Let F(-,-) be Uhlmann fidelity and pen a coherent reference
consistent with the pre-measurement context.

Definition (Candidate V). Fix a target fidelity F'T € (1/2,1). Define

Vo= inf {¢t > 0: IR € Rynys s:t. Fpeon, R[p(t)]) > F'}.

Intuitively: V' is the first time at which coherence can be guaranteed (under the admissible
control set) to reach or exceed FT.



Conjecture (Bounds for V'). There exist model-dependent lower /upper bounds on
V expressible in terms of dephasing integrals and recovery inequalities. In particular, for

dephasing/GKLS dynamics with coherence factor D(t) = exp(— fg F), one expects

V(FT) <V < V(FY),
with
V(F') Z inf{t: D(t) > 2F' -1},  V(F") < inf{t: D) > g(F'; model)},

where g depends on the admissible controls and can be related to Petz-type recovery or
Fawzi—-Renner bounds in specific channels.
Remarks. (i) V depends explicitly on the admissible control set Jpnys; without
constraints, trivial (unphysical) recoveries would make V' = 0.
(ii) In symmetric toy models, one may find V'~ W for time-reversed protocols, but in
realistic, noisy settings V' will generally exceed W'.
(iii) Experimentally, V' is to be estimated by calibrating the strongest achievable recovery
fidelity vs. time under the actual hardware constraints and solving F.,(t) = FT.
Status. We label the above as a conjecture because tight, model-independent expres-
sions for V' require fixing M,pys and hardware constraints. Nevertheless, the definition is
operational and testable, and provides a natural analytic mirror to the W horizon.

References

[1] Peter M. Ferguson. Boundary-condition quantum mechanics (beqm): Preprint and
figures. Zenodo, 2025. Concept DOI,; links to versions and supplementary material.

[2] Andrew M. Gleason. Measures on the closed subspaces of a Hilbert space. Journal
of Mathematics and Mechanics, 6(6):885-893, 1957.

[3] Paul Busch. Quantum states and generalized observables: A simple proof of Glea-
son’s theorem. Physical Review Letters, 91(12):120403, 2003.

[4] Goran Lindblad. On the generators of quantum dynamical semigroups. Communi-
cations in Mathematical Physics, 48(2):119-130, 1976.

[5] Vittorio Gorini, Andrzej Kossakowski, and E. C. G. Sudarshan. Completely pos-
itive dynamical semigroups of N-level systems. Journal of Mathematical Physics,
17(5):821-825, 1976.

[6] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Sys-
tems. Oxford University Press, 2002.

[7] Armin Uhlmann. The “transition probability” in the state space of a x-algebra.
Reports on Mathematical Physics, 9(2):273-279, 1976.

[8] Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jauregui, R. J.
Schoelkopf, M. Mirrahimi, H. J. Carmichael, and M. H. Devoret. To catch and
reverse a quantum jump mid-flight. Nature, 570:200-204, 2019.



[9] B.S. Cirel’son. Quantum generalizations of bell’s inequality. Letters in Mathematical
Physics, 4(2):93-100, 1980.

[10] Rafael D. Sorkin. Quantum mechanics as quantum measure theory. Modern Physics
Letters A, 9(33):3119-3127, 1994.

[11] N. F. Ramsey. A molecular beam resonance method with separated oscillating fields.
Physical Review, 78:695-699, 1950.



