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Provenance and Scope
This technical note complements the BCQM preprint and focuses on analytic, model-
agnostic statements about (i) the probability assignment over channels and (ii) an opera-
tional recoverability horizon W for coherence under standard open-system dynamics and
system-only controls. For context, see the BCQM preprint [1] and the open code repos-
itory (programs for the toy model and double-slit simulations). No new dynamics are
introduced beyond orthodox quantum mechanics; all results are framed within standard
Hilbert-space and GKLS formalisms.

Analytical Proofs — Step 0: Assumptions and Scope
Hilbert-space setting. All systems are modeled on a complex, separable Hilbert space
H. In finite dimensions we assume dimH ≥ 3 for direct application of Gleason; in
dimH = 2 we invoke the POVM extension (Busch). Composite systems use tensor
products.

Measurement events (channels). For any context, the measurable outcomes are
represented by a PVM {Πj} (or a POVM {Ej}). BCQM “p-wave channels” are the
orthogonal subspaces ΠjH associated with that context.

Admissible probability map. A map P from projectors to [0, 1] is admissible if
it is (i) normalized, (ii) finitely additive on sums of orthogonal projectors, and (iii) non-
contextual (depends only on the projector, not the particular decomposition). These are
the hypotheses needed for the Gleason/Busch representation P (Π) = Tr(ρΠ). [2, 3]

Dynamics. Unitary evolution is generated by a Hamiltonian H(t) on H. Open-
system evolution is described by a GKLS master equation [4, 5, 6] when needed; for the
W -bound we assume a dephasing (or more general GKLS) channel with a well-defined
coherence functional D(t) = exp

(
−
∫ t

0
Γ(s) ds

)
∈ [0, 1].

Control constraints. “System-only” recovery refers to CPTP maps implementable
without access to the environment. For V we restrict to a physically motivated class Rphys

(system+ancilla operations within hardware limits). For the W-bound in Steps 2–4 we
restrict “system-only” to phase-covariant controls that commute with the dephasing twirl
(no ancilla, no external phase reference).

Interpretation. Under these assumptions, Steps 1–5 yield analytic consequences
used in the main text; Step 6 is a conjecture until Rphys is fixed by experiment.
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Analytical Proofs — Step 1: Born as Unique Quadratic
Measure
Goal. Replace informal assertions with a compact, self-contained derivation that under
BCQM’s minimal assumptions the only consistent probability assignment for a channel
amplitude a ∈ C is P(a) = |a|2 (up to an overall normalization fixed by

∑
j P(aj) = 1).

Assumptions (A1–A5)

We work in a fixed measurement context with an orthonormal basis of mutually exclusive
channels { |ej⟩ } so that a prepared state is a vector of complex amplitudes ψ =

∑
j aj |ej⟩.

We assume:

(A1) Additivity for exclusive alternatives: For any disjoint index sets J,K,

P
(∑

j∈J

aj |ej⟩
)

+ P
(∑
k∈K

ak |ek⟩
)

= P
( ∑
r∈J∪K

ar |er⟩
)
.

(A2) Normalization:
∑

j P(aj |ej⟩) = 1.

(A3) Global phase invariance: P(eiθψ) = P(ψ) for all real θ.

(A4) Unitary invariance of structure: For any unitary U acting within the span of
a set of exclusive channels, probabilities are assigned to outcomes (projectors), not
to labels; hence relations implied by (A1–A3) must hold in any orthonormal basis
obtained by a unitary mixing.

(A5) Regularity: P is continuous in each amplitude.

Assumptions (A1–A3, A5) are the usual consistency requirements; (A4) is the statement
that only the orthogonal decomposition (the event algebra) matters, not the choice of
basis for that decomposition.

Step 1: Two-channel mixer functional equation

Restrict to the two-dimensional subspace spanned by {|e1⟩ , |e2⟩} and define ψ = a |e1⟩+
b |e2⟩, with a, b ∈ C. Introduce the 50-50 unitary “mixer” H (Hadamard up to phases):

|u⟩ = |e1⟩+ |e2⟩√
2

, |v⟩ = |e1⟩ − |e2⟩√
2

,

so that in the {|u⟩ , |v⟩} basis the state reads

ψ =
a+ b√

2
|u⟩+ a− b√

2
|v⟩ .

Let p(z) denote the probability assigned to a single complex amplitude z in a one-channel
branch (so P(z |·⟩) = p(z)). By (A1–A4), additivity over the exclusive outcomes |u⟩ and
|v⟩ gives

p
(

a+b√
2

)
+ p

(
a−b√

2

)
= p(a) + p(b). (1)

Multiplying (1) by 2 and defining f(z) := 2 p(z) we obtain the parallelogram identity

f(a+ b) + f(a− b) = 2f(a) + 2f(b) for all a, b ∈ C. (2)
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Step 2: Characterization of solutions to the parallelogram identity

It is a standard result (Jordan–von Neumann) that a continuous function f : C → R
satisfying (2) must be a quadratic form of the underlying real vector space, i.e. there
exists a positive semidefinite Hermitian matrix Q such that

f(a) =
[
Re a Im a

]
Q

[
Re a
Im a

]
. (3)

By (A3) global phase invariance, f(eiθa) = f(a) for all θ, which forces Q to be a scalar
multiple of the identity on R2. Hence there exists a constant c ≥ 0 with

f(a) = c |a|2 =⇒ p(a) =
c

2
|a|2. (4)

Step 3: Fixing the constant by normalization

For a normalized state
∑

j |aj|2 = 1, assumptions (A1–A2) give
∑

j p(aj) = 1. Using (4),
we get

∑
j
c
2
|aj|2 = 1 ⇒ c = 2. Therefore

p(a) = |a|2, and hence P(j) = |aj|2.

Conclusion

Under additivity for exclusive alternatives, basis (unitary) invariance, global phase invari-
ance, and continuity, the only consistent probability assignment for channel amplitudes
is P(j) = |aj|2. This derivation is self-contained, independent of Gleason; it coincides
with the standard Born rule and matches the ensemble interpretation used in BCQM.

Analytical Proofs — Step 2: Collapse Horizon as Re-
coverability Threshold
Theorem (Recoverability bound for W ). Let ρ(t) be the reduced state of the system
evolving under a dephasing (or more generally GKLS) channel whose coherence factor
obeys

D(t) = exp
(
−
∫ t

0

Γ(s) ds
)
∈ [0, 1], Γ(s) ≥ 0.

Fix a target fidelity threshold F⋆ ∈ (1/2, 1) and define the optimally recoverable fidelity
with phase-covariant, system-only controls R (no ancilla, no external phase reference) by

Fopt(t) := sup
R

F
(
ρcoh, R[ρ(t)]

)
,

Recovery class. We restrict to phase-covariant, system-only operations: unitary
rotations and dephasing-covariant, unital CPTP maps acting on the system Hilbert space,
with no ancilla and no external phase reference. Equivalently, if T denotes the dephasing
twirl in the pointer basis, we require R ◦ T = T ◦ R, which forbids injecting fresh
coherence. Such operations can re-orient coherence but cannot increase its magnitude
created by dephasing.
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Scope. For higher-dimensional systems, interpret D(t) as the coherence factor of the
targeted two-level coherence block relative to ρcoh; the bound applies to that block and
thus to the task.

where ρcoh is a coherent reference and F is Uhlmann fidelity [7]. Then for all t ≥ 0,

Fopt(t) ≤ 1
2

(
1 +D(t)

)
.

Consequently the collapse horizon defined by

W := inf{t ≥ 0 : Fopt(t) ≤ F⋆}

satisfies the sufficient condition

D(t) ≤ 2F⋆ − 1 =⇒ t ≥W.

For exponential dephasing D(t) = e−γt this yields the closed-form bound

W ≥ 1

γ
ln

1

2F⋆ − 1
.

Proof (sketch). Fidelity is monotone under CPTP maps (data processing). Under
pure dephasing the off-diagonal elements are multiplied by D(t) while populations are
preserved. For the admissible recovery class above, operations commute with the dephas-
ing twirl and cannot increase transverse Bloch-vector length; they can only re-orient it.
Choosing ρcoh as a pure equatorial state (e.g. |+x⟩⟨+x| for qubits), the maximal attain-
able overlap is achieved by rotating the Bloch vector, giving Fopt(t) ≤ 1

2
(1 +D(t)). The

threshold condition and exponential case follow immediately. □
Operational meaning. Once D(t) falls below 2F⋆ − 1, no admissible system-only,

phase-covariant recovery can reach the target coherent reference with fidelity exceeding
F⋆. This turns the intuitive “point of no return” into an analytic threshold for collapse.

Experimental intuition. Experiments that catch and partially reverse a quantum
jump mid-flight succeed only when intervention occurs before a practical point-of-no-
return; in our framing, this is the pre-W region [8]. Repeated failures beyond that
window provide an operational lower bound on W in the same hardware.

Analytical Proofs — Step 3: Standard Constraints
Lemma (Joint probabilities coincide with QM). Let ρ be the system state on
HA⊗HB and let {ΠA

a }, {ΠB
b } be PVMs (or POVMs) describing a measurement context.

Under the admissible probability assignment of Step 1, the joint outcome probability is

P(a, b) = Tr
[
ρ (ΠA

a ⊗ ΠB
b )
]
.

Sketch. By Step 1, any admissible, non-contextual assignment is represented by a
density operator ρ and P(·) = Tr(ρ ·) on the event algebra. Tensor-product structure
yields the displayed form for product contexts.

Representation remark (Gleason/Busch). [2, 3] On Hilbert spaces of dimension
≥ 3, any countably additive, non-contextual probability assignment on the projector
lattice admits a density-operator representation P(Π) = Tr(ρΠ) (Gleason). In dimension
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2, the same representation holds for POVMs (Busch). Our Step 1 result does not use
these theorems; it fixes the unique quadratic amplitude measure under (A1–A5). Here
in Step 3 we adopt the standard operator representation to propagate constraints (no-
signalling, Tsirelson, Sorkin).

Corollary (No-signalling). Marginals are independent of the distant choice:∑
b

P(a, b) = Tr
[
(TrBρ)Π

A
a

]
,

which does not depend on Bob’s setting. Hence BCQM respects no-signalling.

Corollary (Tsirelson bound) [9]. For any dichotomic observables A0, A1 and B0, B1

with ∥Ai∥ ≤ 1, ∥Bj∥ ≤ 1, the CHSH value

S = ⟨A0 ⊗B0⟩+ ⟨A0 ⊗B1⟩+ ⟨A1 ⊗B0⟩ − ⟨A1 ⊗B1⟩

satisfies |S| ≤ 2
√
2 because expectations are quantum traces with a positive state ρ and

bounded operators—exactly the usual derivation of Tsirelson’s bound.

Corollary (No third-order interference; Sorkin). [10] Since P is quadratic in
amplitudes (Step 1), inclusion–exclusion for triple-slit experiments yields vanishing third-
order interference term I3 = 0, as in standard quantum mechanics.

Remark. These constraints do not require simulations: they follow solely from the
admissible probability map (Step 1) and the standard operator algebra on the Hilbert
space.

Analytical Proofs — Step 3b: Two-Time q-Wave ⇒ Den-
sity Operator (CTP)
Claim. Let Ψ(t+, t−) be the BCQM two-time object. Define the kernel Kt(t1, t2) =
Ψ(t+, t1)Ψ(t+, t2)

∗ and the operator

ρ(t+) :=

∫
dt−Ψ(t+, t−)Ψ(t+, t−)

∗,

with the integral understood as a sum/integral on the relevant measure space. If the
isolated evolution along t+ is unitary U(t+, 0) generated by H(t), then

ρ(t+) = U(t+, 0) ρ(0)U
†(t+, 0).

Assumptions. (i) Ψ is square-integrable in t− so that the integral exists; (ii) the t−
branch represents the conjugate evolution (closed-time path) of the amplitude; (iii) ρ(0)
is formed as

∫
dt−Ψ(0, t−)Ψ(0, t−)

∗.
Sketch. In the Schwinger–Keldysh/CTP formalism, the generating functional evolves

a ket forward and a bra backward; the t− dependence tracks off-diagonals. Unitary
evolution on t+ acts by conjugation on the outer product |ψ(t+)⟩⟨ψ(t+)|, yielding the
claimed expression for ρ(t+). This pins the two-time language of BCQM to the standard
density operator machinery.
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Analytical Proofs — Step 4: Worked Ramsey Example
for the W Bound
Setup. Consider a single qubit subjected to a standard Ramsey sequence [11]: a π/2
pulse prepares |+x⟩ = (|0⟩+ |1⟩)/

√
2, followed by free evolution for time t, then a second

π/2 pulse and readout in the computational basis. Assume pure dephasing with rate γ
during the free-evolution window, modeled by the GKLS master equation

ρ̇(t) = γ(σzρ(t)σz − ρ(t)) /2 ,

which yields an off-diagonal coherence factor

D(t) = e−γt .

Ramsey signal. The measured Ramsey fringe contrast equals the magnitude of the
off-diagonal element,

C(t) = |ρ01(t)|/|ρ01(0)| = D(t) = e−γt .

Thus the decay of visibility is exponential with rate γ.
Recoverability threshold and W . Let F⋆ ∈ (1/2, 1) denote a target fidelity for

“successful rollback” to a coherent reference using phase-covariant, system-only control
(no ancilla, no external phase reference). From Step 2 we have the bound

Fopt(t) ≤ 1
2

(
1 +D(t)

)
= 1

2

(
1 + e−γt

)
.

(This uses the recovery class defined in Step 2.)
Define the collapse horizon

W := inf{t ≥ 0 : Fopt(t) ≤ F⋆} .

A sufficient condition to have crossed W is

e−γt ≤ 2F⋆ − 1 =⇒ t ≥ 1

γ
ln

1

2F⋆ − 1
.

Numerical illustration. For a typical coherence time γ−1 = 10 µs and a fairly
stringent threshold F⋆ = 0.9, we obtain

W ≳
1

γ
ln

1

0.8
≈ 0.223 γ−1 ≈ 2.23 µs .

Sharper control or a less stringent F⋆ increases the recoverable window; stronger dephasing
(larger γ) shrinks it correspondingly.

Generalization. If the dephasing rate is time-dependent with cumulative rate
∫ t

0
Γ(s) ds,

the same reasoning yields ∫ W

0

Γ(s) ds ≥ ln
1

2F⋆ − 1
,

which reduces to the exponential case when Γ(s) ≡ γ.
Interpretation. The Ramsey example identifies W as the first-passage time beyond

which phase-covariant, system-only recovery cannot restore the target fidelity. This gives
W a concrete, experiment-facing meaning independent of simulations.

This calibration picture aligns with standard open-system treatments of Ramsey de-
phasing and with mid-flight intervention experiments [6, 8].
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Analytical Proofs — Step 5: Delayed Choice and Quan-
tum Zeno
Proposition (Delayed choice as contextual reset). Let U(t2, t1) denote unitary
dynamics generated by a time-dependent Hamiltonian H(t). Suppose a measurement
context switch occurs at time tb that replaces projectors {Πj} with {Π′

k} for t ≥ tb. Then
for any initial state ρ(0), the probability of outcome k at time t ≥ tb is

P(k) = Tr
[
ρ(0)U †(tb, 0)Π

′
k U(tb, 0)

]
,

which coincides with the standard quantum prediction for delayed-choice experiments.
Sketch. By Step 1, admissible probabilities are given by Tr(ρ ·) on the event algebra.

Evolving to tb, then evaluating with the updated projectors {Π′
k} yields the displayed

form, independent of whether the choice of context was made “late”. No retrocausality is
implied; the context defines the event algebra at readout.

Proposition (Quantum Zeno as pre-W resets). Let ρ(t) obey a GKLS master
equation with coherence factor D(t) as in Step 2. Apply a sequence of ideal non-demolition
interventions (projective checks) at intervals ∆t, all within the pre-horizon regime t < W .
Then the survival probability for the initial subspace is

S(t) = exp
(
−
∫ t

0

λeff(s) ds
)
,

with an effective hazard λeff(s) that is reduced as ∆t → 0, yielding the Zeno effect
(inhibition of decay/coherence loss), consistent with the BCQM notion that irreversibility
has not yet crossed the recoverability threshold W .

Sketch. For short ∆t, the dephasing integral
∫ n∆t

0
Γ(s) ds is broken into small segments

with resets that keep D near unity between checks; in the limit one obtains quadratic-
in-time short-time survival and a suppressed effective hazard. This is the standard Zeno
derivation phrased through the recoverability lens of Step 2.

Analytical Proofs — Step 6: Conjecture for the Re-
coherence Horizon V

Motivation. The collapse horizon W (Steps 2–4) formalizes when system-only recovery
of coherence is no longer possible above a target fidelity. By symmetry of the BCQM
picture, we introduce a mirror notion—a re-coherence horizon V—that marks when suf-
ficient conditions exist for coherence to become inevitable under admissible controls.

Admissible controls. Let Rphys denote physically permitted recovery maps: CPTP
maps implementable by system + ancilla unitaries with experimentally allowed couplings,
bandwidth, and noise. Let F (·, ·) be Uhlmann fidelity and ρcoh a coherent reference
consistent with the pre-measurement context.

Definition (Candidate V ). Fix a target fidelity F † ∈ (1/2, 1). Define

V := inf
{
t ≥ 0 : ∃R ∈ Rphys s.t. F

(
ρcoh, R[ρ(t)]

)
≥ F †} .

Intuitively: V is the first time at which coherence can be guaranteed (under the admissible
control set) to reach or exceed F †.
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Conjecture (Bounds for V ). There exist model-dependent lower/upper bounds on
V expressible in terms of dephasing integrals and recovery inequalities. In particular, for
dephasing/GKLS dynamics with coherence factor D(t) = exp

(
−
∫ t

0
Γ
)
, one expects

V (F †) ≤ V ≤ V (F †),

with

V (F †) ≳ inf
{
t : D(t) ≥ 2F † − 1

}
, V (F †) ≲ inf

{
t : D(t) ≥ g(F †; model)

}
,

where g depends on the admissible controls and can be related to Petz-type recovery or
Fawzi–Renner bounds in specific channels.

Remarks. (i) V depends explicitly on the admissible control set Rphys; without
constraints, trivial (unphysical) recoveries would make V = 0.
(ii) In symmetric toy models, one may find V ≈ W for time-reversed protocols, but in
realistic, noisy settings V will generally exceed W .
(iii) Experimentally, V is to be estimated by calibrating the strongest achievable recovery
fidelity vs. time under the actual hardware constraints and solving Fmax(t) = F †.

Status. We label the above as a conjecture because tight, model-independent expres-
sions for V require fixing Rphys and hardware constraints. Nevertheless, the definition is
operational and testable, and provides a natural analytic mirror to the W horizon.
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