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Abstract

Boundary-Condition Quantum Mechanics (BCQM) introduces a finite coherence horizon
Wcoh at the level of quantum events and uses it to define an intrinsic inertial-noise spectrum.
Papers IV [1] and IV_b [2] developed this formalism and a numerical pipeline based on
Ornstein–Uhlenbeck–type control kernels which are deliberately blind to Wcoh, leading to
an amplitude scaling A(Wcoh) ≈ const and fitted exponent β ≈ 0. In this note we take the
next step and study a family of simple, explicitly Wcoh-dependent graph kernels in which a
“soft rudder” rule makes the persistence of a binary hop direction increase with Wcoh. Using
the same inertial-noise pipeline as IV_b, we show that this entire class of binary, fixed-step
models produces a robust amplitude scaling A(Wcoh) ∝ W −β

coh with β ≈ 1/2, independent of
the detailed slip law. We interpret this as evidence for a diffusive inertia universality class,
limited by the shot noise of ±1 steps, and argue that purely binary hop geometries cannot
yield a smooth, high-inertia limit with β ≈ 2. This motivates the richer graph primitives and
clock-based curvature models developed in BCQM V.

Within the broader BCQM continuum-limit programme, this paper is a Stage 1 contribu-
tion: it concerns only the kinematic emergence of effective trajectories and their inertial-noise
spectra from discrete hop rules. Questions of emergent metric structure (Stage 2), curvature
from mass or energy clusters (Stage 3), and internal symmetry or gauge structure (Stage 3b)
are deliberately left to future work, to be addressed in BCQM V and beyond.

1 Introduction
BCQM I–III [3][4][5] introduced the coherence horizon Wcoh and a discrete event-based picture in
which inertial motion and spacetime emerge from the statistics of collapse events. BCQM IV [1]
formalised the notion of an intrinsic inertial noise spectrum associated with a probe thread and
linked it to Wcoh at the level of general principles. BCQM IV_b [2] then constructed an explicit
numerical pipeline using an Ornstein–Uhlenbeck (OU) control kernel that is deliberately blind
to Wcoh, and showed that this control model yields an amplitude A(Wcoh) that is essentially
independent of Wcoh (fitted β ≈ 0), together with the expected N−1/2 suppression of centre-of-
mass noise for clusters and a mapping into SI units.

The natural next question is what happens when Wcoh enters a graph-level hop kernel in a
controlled way. Can a purely local, Wcoh-dependent rule reduce inertial noise and thereby realise
the idea of emergent inertia from event statistics? If so, how far can such a rule be pushed before
the discrete geometry itself becomes the limiting factor?

The purpose of this paper (BCQM IV_c) is to address these questions for a broad and analytically
transparent class of one-dimensional “soft rudder” models in which Wcoh only affects the
persistence of a binary hop direction vn ∈ {±1}, while the step size remains fixed. Using
the same spectral pipeline as IV_b, we show that these models produce a robust scaling
A(Wcoh) ∝ W −β

coh with β ≈ 1/2, essentially independent of the precise slip law used. We interpret
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this as evidence for a diffusive inertia universality class arising from the shot noise of binary
steps, and we argue that a purely binary hop geometry cannot produce a smooth, high-inertia
limit with β ≈ 2. This motivates the richer graph primitives and clock-based curvature models
to be explored in BCQM V.

Structure of the paper. Section 2 defines the binary soft-rudder hop kernel and its relation
to the W-blind OU control model of BCQM IV_b. Section 3 summarises the numerical pipeline
used to extract the inertial-noise amplitude scaling and recalls its validation in BCQM IV_b.
Section 4 presents the amplitude scaling results and interprets them in terms of a diffusive inertia
universality class and a no-go statement for binary fixed-step kernels. Section 5 summarises
the lessons for the broader BCQM continuum-limit programme and for the planned BCQM V.
Appendix A collects numerical details, parameter tables, and robustness checks.

2 Binary soft-rudder hop kernel
In this section we define the one-dimensional binary soft-rudder model that will serve as our test-
bed for Wcoh-dependent kernels. The aim is to keep the construction as simple and transparent
as possible, while still capturing the essential feature of a direction persistence that increases
with Wcoh.

2.1 State variables and flat control model

We consider a discrete-time process with step index n = 0, 1, 2, . . . , in which a probe has position
xn ∈ Z and a direction variable vn ∈ {+1, −1}. Each hop updates the state via

xn+1 = xn + vn+1, (1)

so that the step size is fixed to |∆x| = 1 and all non-trivial structure enters through the dynamics
of vn.

For comparison we recall the W-blind control model used in BCQM IV_b, in which an effective
OU-type acceleration kernel is used to generate an inertial-noise process a(t) that is independent
of Wcoh. In the present binary setting one can define an analogous W-blind control process in
which vn flips with a fixed probability p0 at each step, independent of Wcoh. This yields a simple
symmetric random walk and serves as the baseline against which we compare the W-dependent
soft-rudder kernels below.

2.2 Soft-rudder rule and Wcoh-dependence

We now introduce a family of W-dependent “soft rudder” rules in which the direction variable
vn is updated according to

vn+1 =

vn, with probability pstay(Wcoh),

−vn, with probability 1 − pstay(Wcoh).
(2)

The key modelling choice is the functional form of the “stay” probability pstay(Wcoh). In this
paper we consider simple monotone forms such as

pstay(Wcoh) = 1 − c

W α
coh

, (3)

for suitable constants c > 0 and exponents α > 0 chosen such that 0 ≤ pstay ≤ 1 across the range
of Wcoh of interest. The precise choice of (c, α) and of any regularisation at small Wcoh is not
important for the universality results; we will return to this point in Section 4 and Appendix A.
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The coherence horizon Wcoh thus enters the kernel only through the persistence of the direction
variable vn. The step size remains fixed and binary, and the model has no explicit notion of a
continuous velocity; as a result the residual noise is always tied to the “shot noise” of ±1 steps.

3 Numerical pipeline and relation to BCQM IV_b
In this section we summarise the numerical pipeline used to extract the inertial-noise amplitude
scaling A(Wcoh) and the fitted exponent β, and emphasise its continuity with the BCQM IV_b
analysis.

3.1 From hop sequences to acceleration noise

In the present binary setting we work with a unit time step ∆t = 1 and regard the hop index n
as a discrete time coordinate tn = n∆t. Given a trajectory {xn} generated by the soft-rudder
rule, we construct an effective acceleration time series an by taking the discrete second difference
of the position,

an = xn+1 − 2xn + xn−1, (4)

so that an changes only when the direction variable vn flips. Interpreting an as samples of a
piecewise-constant acceleration a(t) at times tn, we can feed this time series directly into the
spectral-analysis machinery developed in BCQM IV_b.

3.2 Power spectral density and amplitude extraction

Following BCQM IV_b, we estimate the inertial acceleration-noise spectrum by computing a
one-sided power spectral density (PSD) Sa(ω) for each realisation of an via a discrete Fourier
transform with suitable windowing and normalisation. From the ensemble-averaged PSD we
extract an overall noise amplitude

A =
(∫ ∞

0
Sa(ω) dω

)1/2
, (5)

and a characteristic crossover frequency ωc defined as the spectral centroid of Sa(ω). These
definitions are identical to those used in IV_b, ensuring that the soft-rudder results can be
compared directly to the W-blind baseline and to later BCQM V models.

3.3 Fitting βand error estimation

To quantify the dependence of the amplitude on the coherence horizon we fit the measured
values of A(Wcoh) to a power-law form

A(Wcoh) ≈ C W −β
coh (6)

by performing a linear regression on log A versus log Wcoh over a range of Wcoh where the
spectrum is well converged. We estimate statistical uncertainties on β using a simple bootstrap
over the simulation ensemble. For each value of Wcoh we have Nens independent realisations,
each yielding an amplitude Aj(Wcoh). A single bootstrap sample is constructed by drawing
Nens indices with replacement, recomputing the ensemble-mean amplitudes Ā(Wcoh) from this
resampled set, and refitting the log–log slope to obtain a bootstrap estimate β(b). Repeating
this procedure for many resamples yields an empirical distribution of β; we quote its mean as
the central value and its standard deviation as the error bar.
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3.4 Code implementation and reproducibility

The soft–rudder single–thread kernel is implemented in a lightweight Python package bcqm_soft_rudder,
released as an open–source companion to this paper [6]. The structure mirrors the BCQM IV_b
control code: a small model module implements the hop dynamics, a spectral module im-
plements the power–spectral–density (PSD) estimation and amplitude extraction, and a thin
command–line interface orchestrates the Wcoh scan and output.

Concretely, model.py defines the binary velocity process with the soft–rudder slip law

q(Wcoh) = 1 − pstay(Wcoh) = k

Wcoh
, (7)

and the fixed–step position update xn+1 = xn + vn. The companion module spectra.py
implements the same power–spectral–density pipeline as in BCQM IV_b, constructing the
ensemble–averaged acceleration spectrum Sa(ω) and extracting the noise amplitude A(Wcoh)
and crossover frequency ωc according to the definitions in Section 4. A small helper script
fit_beta.py performs the log–log regression A(Wcoh) ∼ W −β

coh and reports the fitted exponent
β with its statistical uncertainty.

All numerical results in this paper can be reproduced from a single configuration file and
command line. The reference scan uses the YAML file configs/wcoh_scan_soft_rudder.yml,
which specifies the time step ∆t = 1, trajectory length Nsteps = 16384, ensemble size Nens = 64,
random seed, and the list Wcoh ∈ {5, 10, 20, 40, 80, 160}. From the repository root a complete
reproduction of Fig. 1 is obtained by running

python3 -m bcqm_soft_rudder.cli run configs/wcoh_scan_soft_rudder.yml (8)

to generate the amplitude data, followed by

python3 -m bcqm_soft_rudder.fit_beta outputs_soft_rudder/amplitude_scaling_soft_rudder.csv
(9)

to fit β. The repository includes a short TESTING.md file documenting basic convergence checks
in Nsteps and Nens, and a telegraph–noise sanity check confirming that the soft–rudder kernel
indeed falls into the diffusive universality class with β ≈ 1/2.

4 Results: diffusive inertia and β ≈ 1/2
We now present the main numerical results: the scaling of the inertial-noise amplitude with
Wcoh for the binary soft-rudder kernels defined in Section 2.

4.1 Diffusive inertia universality class

The soft-rudder kernels of Section 2 can be viewed as discrete-time telegraph processes for the
direction variable vn ∈ {+1, −1}. At each tick the direction is flipped with probability

q(Wcoh) = 1 − pstay(Wcoh), (10)

and otherwise kept fixed; the position is updated as xn+1 = xn + vn. The discrete acceleration
an = xn+1 − 2xn + xn−1 is therefore a sequence of kicks which occur whenever vn flips, with a
fixed jump size set by the binary geometry.

For the one-parameter family of slip laws

q(Wcoh) ∝ W −α
coh , (11)
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we find numerically that the inertial-noise amplitude obeys a power-law scaling

A(Wcoh) ∼ CW −β
coh , (12)

with an effective exponent
β ≈ α

2 . (13)

This is exactly what one expects from the telegraph picture: the number of flips in a long window
of duration T scales as T q(Wcoh), and the r.m.s. amplitude of the associated shot noise scales as
the square root of that flip rate, just as in the continuous-time telegraph and Ornstein–Uhlenbeck
descriptions of velocity fluctuations in Brownian motion [7].

In particular, for the “natural” choice α = 1, corresponding to an order-unity number of direction
errors per coherence window (q(Wcoh) ∝ 1/Wcoh), we consistently obtain

β ≈ 0.5, (14)

with small error bars over a range of trajectory lengths and ensemble sizes (App. A). This is the
canonical single-thread result emphasised in this paper. Steeper choices with α > 1 produce
larger exponents (α = 3 gives β ≈ 1.5 in our tests), but they always remain well below the
ballistic value β = 2 and require increasingly fine-tuned slip probabilities.
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Figure 1: Single-thread soft-rudder amplitude scaling. Points: numerical estimates of the inertial-
noise amplitude A(Wcoh) for the “inv” slip law q(Wcoh) = k/Wcoh with k = 2.0, Nsteps = 16384,
Nens = 64, and Wcoh ∈ {5, 10, 20, 40, 80, 160}. The dashed line is a log–log fit of the form
A(Wcoh) ∼ CW −β

coh , yielding β ≈ 0.50. Over a factor of 32 in Wcoh the amplitude drops by a
factor of ∼ 5.6, consistent with a diffusive universality class rather than a ballistic β = 2 scaling.

Table 1: Summary of the fitted amplitude-scaling exponent β for the single-thread soft-
rudder kernel used in this note. The slip law is q(Wcoh) = k/Wcoh with k = 2.0 and
Wcoh ∈ {5, 10, 20, 40, 80, 160}. The fit shown in Fig. 1 yields β ≈ 0.499 (reported here as
0.50), firmly in the diffusive regime and far from the ballistic value β = 2.

Kernel Parameters Fitted exponent β

Soft-rudder, “inv” slip q(Wcoh) = k/Wcoh, k = 2.0 0.50
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4.2 Limits of binary fixed-step kernels

The same reasoning also explains why tuning pstay(Wcoh) cannot drive the model into a genuinely
ballistic regime. Within the class of kernels defined in Section 2, three structural features are
held fixed:

(a) the step size is binary and constant (xn+1 − xn = vn ∈ {±1});

(b) the internal state space for the direction variable is two-point (vn = ±1);

(c) Wcoh enters only through a local persistence probability pstay(Wcoh).

Changing pstay can lengthen or shorten the typical run lengths of {vn}, but it cannot alter the
basic telegraph-like character of the process or the discrete jump size of the acceleration kicks.
In particular, there is no way, within this family, to suppress the low-frequency acceleration
fluctuations faster than the square-root law set by central-limit behaviour of rare, finite jumps.
For the natural choice α = 1, the fitted exponents β ≈ 1/2 should therefore be understood
as a property of an entire class of binary fixed-step kernels, not as a peculiarity of a specific
parametrisation.

This motivates a careful no-go statement for the single-thread telegraph class we have just
described:

For one-dimensional, fixed-step, binary hop kernels in which the effect of the coherence
horizon Wcoh is to produce a slip probability q(Wcoh) ∝ W −α

coh with α of order unity,
the inertial acceleration-noise amplitude remains in a diffusive universality class
with exponent β ≈ α/2, and in particular β ≈ 0.5 for the natural choice α = 1.
Within this family, reaching a ballistic scaling A ∝ W −2

coh would require α ≈ 4, i.e. an
exceptionally steep and finely tuned suppression of the slip probability q(Wcoh) with
Wcoh.

We emphasise that this is not a theorem about all possible discrete models, nor about all BCQM-
compatible kernels. It is a restriction on a deliberately simple Stage 1 test-bed: single primitive
threads, binary hops of fixed size, and purely local Wcoh-dependent persistence. Escaping the
diffusive regime will require either richer internal state spaces, variable step sizes, or—most
naturally in the BCQM picture—bundles and knots of many primitive threads whose centre-of-
mass motion can exhibit much stiffer behaviour. A brief outlook on such bundle models is given
in Section 5 and in the broader BCQM programme notes.

5 Lessons for BCQM V
The telegraph scaling β ≈ α/2 also clarifies why bundles and knots are the natural carriers of
inertia in the BCQM picture. Keeping the single-thread slip law in a physically motivated regime
(α ∼ 1, so that each primitive thread makes of order one direction error per coherence window)
pins the single-thread exponent near β ≈ 0.5. Pushing a lone thread all the way to β ≈ 2 would
require α ≈ 4, i.e. a slip probability q(Wcoh) ∝ W −4

coh with no clear structural justification. By
contrast, bundles of many threads can in principle suppress the centre-of-mass acceleration noise
by averaging over N(Wcoh) constituent threads while each thread individually remains in the
natural α ∼ 1 regime. Inertia then becomes an emergent property of thread bundles and knots,
not of single primitive threads.

For the broader BCQM programme, and in particular for the planned BCQM V, the lesson is
twofold.

First, classical-looking inertia cannot be a property of a single binary thread with a fixed hop
size. If a lone primitive thread generically lives in a diffusive regime, then any effective degree
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of freedom that behaves like a massive particle in spacetime must arise from a richer structure
than the single trajectory studied here. In BCQM language, this points naturally to bundles
and knots of many primitive threads as the carriers of inertial structure: their centre-of-mass
motion can in principle exhibit much stiffer behaviour than any one constituent thread.

Second, the coherence horizon Wcoh must enter more deeply than through a local persistence
probability. In BCQM IV_b and in the present work, Wcoh modulates the statistics of a fixed
discrete geometry (binary hops of size one). For BCQM V, the expectation is that Wcoh will
instead control how many threads can remain coherently bound within a knot, how long such
bundles persist, and how strongly their collective centre-of-mass noise is suppressed. In that
regime the amplitude A(Wcoh) should become a probe of bundle size, internal structure, and
curvature, not merely of a single-thread slip probability.

BCQM V will therefore not attempt to “improve” the single-thread kernel of this paper. Rather,
it will treat the diffusive β ≈ 1/2 scaling as a baseline constraint and move on to models in
which mass, clocks, and curvature are associated with bundles and knots of threads whose
collective dynamics can plausibly support ballistic inertial behaviour. The single-thread no-go
result established here is intended to be a stable foundation for that next step, not an endpoint.

A Numerical details and robustness checks
This appendix records the numerical choices and basic robustness checks underlying the results
in Section 4.

A.1 Simulation parameters

All simulations use the binary soft-rudder kernel of Section 2, with unit time step ∆t = 1 and
hop updates

vn+1 =
{

vn, with probability pstay(Wcoh),
−vn, with probability 1 − pstay(Wcoh),

(15)

and position updates xn+1 = xn + vn. Unless otherwise stated we take the initial direction v0 to
be equally likely ±1 and initialise at x0 = 0.

For each value of the coherence horizon Wcoh in the scan we generate an ensemble of Nens
independent trajectories of length Nsteps and construct the acceleration sequence

an = xn+1 − 2xn + xn−1, (16)

In the reference runs underlying Fig. 1 we used

Nsteps = 16384, Nens = 64, (17)

with an independent pseudo-random seed for each ensemble member. (These values were chosen
to balance statistical convergence against CPU time; they can be increased straightforwardly at
the cost of longer runtimes.)

For the reference single-thread run in Fig. 1, we use the “inv” slip law q(Wcoh) = 1−pstay(Wcoh) =
k/Wcoh with k = 2.0, a time step ∆t = 1, trajectory length Nsteps = 16384, ensemble size
Nens = 64, and Wcoh ∈ {5, 10, 20, 40, 80, 160}. The corresponding amplitude fit A(Wcoh) ∼ W −β

coh
yields β ≈ 0.50, consistent with the telegraph scaling β ≈ α/2 for α = 1.

In the numerical implementation we enforce the probability bounds by clipping pstay(Wcoh) to
the interval [0, 1] after evaluating the chosen slip law. For the range of coherence horizons used in
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this note (Wcoh ∈ {5, 10, 20, 40, 80, 160} with k = 2.0) the resulting values of pstay lie comfortably
inside [0, 1], so clipping is only a formal safeguard and does not affect the runs reported here.

A.2 Power spectral density estimation

For each trajectory we estimate a one-sided power spectral density Sa(ω) for the acceleration
sequence an via a discrete Fourier transform. We employ a standard Hann window and
normalisation convention in which the integrated PSD reproduces the variance of the time series.
The ensemble-averaged PSD Sa(ω) is obtained by averaging the individual spectra over the Nens
realisations.

From Sa(ω) we extract the overall noise amplitude

A =
(∫ ∞

0
Sa(ω) dω

)1/2
, (18)

and a characteristic crossover frequency ωc defined as the spectral centroid,

ωc =
∫ ∞

0 ω Sa(ω) dω∫ ∞
0 Sa(ω) dω

, (19)

exactly as in BCQM IV_b. Numerically, the integrals are implemented as Riemann sums over
the discrete frequency grid.

A.3 Amplitude scaling and βfit

For each value of Wcoh in the scan we thus obtain a pair (A, ωc). The amplitude-scaling plot in
Fig. 1 uses the ensemble-mean values of A with error bars given by the standard error over the
ensemble. To extract the exponent β we perform a linear regression of log A versus log Wcoh over
the range of Wcoh values shown in the figure. Uncertainties on β are estimated via bootstrap
resampling of the ensemble at each Wcoh and repeating the fit.

For the kernels studied here the fitted exponents cluster tightly around β ≈ 1/2, with error bars
small compared to the separation between β = 1/2 and β = 2. The precise numerical values are
not themselves the main point; what matters is the consistent appearance of a diffusive exponent
close to 1/2 across different choices of pstay(Wcoh) and simulation parameters.

A.4 Robustness checks

To test robustness we performed the following variations:

• Longest-run length: increasing Nsteps by a factor of two left the fitted β unchanged within
the bootstrap error bars, while slightly reducing the uncertainties.

• Ensemble size: increasing Nens improved the stability of the PSD estimate and tightened
the amplitude error bars, again without shifting the mean β.

• Alternative window functions: replacing the Hann window with a rectangular or Blackman
window altered the high-frequency detail of Sa(ω) but did not affect the extracted low-
frequency amplitude scaling or the fitted exponent within uncertainties.

• Initial conditions: biasing the initial direction v0 or shifting the starting position x0
produced transient differences at early times but no change in the long-time PSD or in the
fitted amplitude scaling.

These checks support the claim that the observed β ≈ 1/2 behaviour is a property of the kernel
class itself rather than an artefact of particular numerical choices.
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